深圳市裕佳環保科技有限公司
客服經理:180-2533-5953
電 話:0755-27784626
地 址:深圳市寶安區松崗街道紅星社區西輔路19號
深圳市裕佳環保科技有限公司
客服經理:180-2533-5953
電 話:0755-27784626
地 址:深圳市寶安區松崗街道紅星社區西輔路19號
印刷廢水處理不可忽視
1.1污水處理工藝的發展
1914年,英國人Ardern、Lockett發明了活性污泥工藝,這一事件成為了現代污水發展的起點和重要的標志性事件。自那以后,活性污泥工藝成為污水處理的主流處理技術,圍繞著活性污泥工藝,污水處理技術獲得了長足的發展,出現了百花齊放的技術格局。
活性污泥工藝在經歷了早期的zhuanli權問題之后迎來了技術的空前繁榮,主要體現在基本理論的完善和各種變形工藝的出現,尤其是20世紀70年代出現的生物脫氮除磷技術(BNR)成為活性污泥工藝發展的一個重要里程碑,并在某種程度上奠定了當今污水處理技術的主要局面,同時生物膜工藝獲得再次發展機會,IFAS、MBBR及BAF等工藝由于其在緊湊性方面的優勢在升級改造方面獲得了一定的優勢。另外在20世紀末,一些創新性的工藝如厭氧氨氧化、好氧顆粒污泥技術逐漸登上了歷史舞臺,如圖1所示。
在活性污泥工藝經歷了100多年的發展之后,污水處理技術的大廈已經相當完善,目前的污水處理工藝在傳統水質方面已經不是問題,北美的研究結果表明,生物脫氮除磷工藝的極限可以達到TN<3 mg/L、TP<0.1 mg/L。荷蘭的研究結果也表明,在條件適應的情況下活性污泥工藝的技術極限可以達到TN<2.2 mg/L、TP<0.15 mg/L。
1.2污水處理理念的轉變
進入21世紀后,污水處理領域內出現了重大的理念變革,污水已經不再被認為是一種廢物,而是一種可再生的資源,污水處理也正由過去的以衛生文明與環境保護為目標向著資源回收的方向發展。這一點無論從荷蘭提出的NEWs理念,即未來污水處理廠將是營養物、能源與再生水的制造工廠,還是美國水環境聯盟正式摒棄污水處理廠之稱,轉而統稱為水資源廠,亦或是新加坡倡導的將Wastewater(污水)改稱為Usedwater(舊水),無不印證著在世界范圍內污水作為一種可再生資源已經深入人心。伴隨著理念的變革,污水處理工藝在技術的緊湊性、可持續性、適應性方面朝著更加深入的方向發展。
2未來污水處理工藝發展的方向
當前城市污水處理的主流技術是生物處理技術,生物處理技術如何在未來發展實際上反映了今后相當一段時間內的污水處理工藝發展方向。本文僅對未來20年內的污水處理技術發展做一些分析和判斷。
2.1好氧顆粒污泥技術
2.1.1歷史與現實中的現象
活性污泥工藝的出現與發展實際上是采用各種方法選擇微生物的過程。1914年,Ardern和Lockett將曝氣后沉淀下的污泥留了下來,將不易沉降的微生物“淘洗”出去,采用這種序批式的方式,他們觀察到了顆粒污泥的現象。
1972年,James Barnard在接觸穩定的試驗裝置中也注意到了顆粒污泥的現象,當時他用初沉池的出水進入到反應器中,接觸時間15 min,排泥只從表面排泥,接觸區的污泥濃度22 000 mg/L,Barnard觀察到了明顯的污泥顆粒,“像粗砂一樣”,當時的污泥負荷非常高。
2.1.2好氧顆粒污泥的形成與選擇
活性污泥工藝從誕生至今一直不斷經歷著“選擇”的過程,早期的污泥回流使微生物選擇留在系統中,起到了最為關鍵的作用;此后,人們通過基本的長泥齡方式而使硝化菌在系統中選擇地存在;而生物除磷工藝的出現,則是通過厭氧-好氧的交替環境選擇性地使聚磷菌(PAOs)在系統中存在,可以看出對微生物的選擇過程一直伴隨著污水處理工藝的發展,如圖2所示。當然,在這一系列的基本選擇過程中,還有其他因素的影響,比如硝化過程中對DO的需求、生物除磷過程對VFA的需求等。
好氧顆粒污泥技術的出現與發展實際上仍然是對微生物選擇過程的更進一步認識,在這一認識過程伴隨著對生物膜、污泥膨脹的更加深入理解。好氧顆粒污泥既可以在只去除COD的好氧環境中出現,也可以在厭氧-好氧的交替環境中去除COD及氮、磷,在這種形式的顆粒污泥中,硝化菌及普通異養菌在顆粒污泥的最外層,靠近內核部分的是反硝化菌、聚磷菌(PAOs)、聚糖菌(GAOs)。因此,好氧顆粒污泥去除營養物的機理實際上與活性污泥工藝相同,只不過并不是在不同的池子來實現,而是在顆粒污泥的不同區域來實現。
目前一般認為主要有以下幾個方面對顆粒污泥的形成具有重要的影響:
飽食-饑餓選擇,通常以外部基質用于生長的階段稱為飽食期,而以內部基質(PHB)生長的階段稱為饑餓期。與利用乙酸或葡萄糖等易生物降解有機物相比,異養微生物利用PHB或糖原等慢速可生物降解物質的生長速率較慢,利用這一現象可以獲得穩定的顆粒污泥。生物除磷的厭氧-好氧過程是實現上述過程的良好方式,在厭氧階段PAO或GAO將乙酸轉換為PHB或糖原。因此,rbCOD有利于微生物的快速生長,進而轉換為慢速可生物降解的胞內物質。這樣在生物除磷工藝中就會相對更容易形成顆粒污泥。在饑餓階段,基質通過顆粒內層的反硝化被降解到最低,或是在顆粒外層的好氧區域實現降解。
有機負荷(OLR)及基質的組成對顆粒污泥的形成很重要,采用較高的負荷選擇可以使基質進入顆粒污泥的內層,這樣就容易形成強健的內核。基質組成的影響主要是體現在快速可生物降解COD(rbCOD)與慢速可生物降解COD(sbCOD),在飽食期rbCOD和VFA的獲得對于胞內存儲物質的形成很關鍵,而sbCOD則會導致絲狀菌在好氧階段在競爭中獲得優勢。
人們在對生物膜的研究過程中,發現強的剪切力可以促使形成薄而密實的生物膜,同時伴隨著剪切力相關的一個重要現象是胞外聚合物(EPS)的產生,EPS在促使細胞的“凝聚”、“粘合”方面發揮重要的功能,對于維持生物膜的整體結構方面扮演著重要的角色,在很多的研究中都可以觀察到強剪切力會促使生物膜分泌更多的EPS從而維持生物膜的整體結構平衡。與生物膜類似,水力剪切力對于好氧顆粒污泥的形成也有重要的影響,強的剪切力會促使顆粒污泥的形成,而弱剪切力則不會形成顆粒污泥,只能形成蓬松的絮體結構。
同樣,EPS在對顆粒污泥的形成方面也扮演著類似的角色,強剪切力會促使顆粒污泥像生物膜那樣分泌出更多的EPS來產生平衡的生物結構,這也就意味著EPS對于形成穩定的顆粒污泥非常重要。
此外,通過選擇性的排泥,將不易沉淀的污泥排出系統,沉降速度較快的顆粒留存于系統之內,提高顆粒污泥在其中的比例,這也是促成顆粒污泥形成的原因之一;其他形成顆粒污泥的因素還包括SRT、有機負荷、二價陽離子及三價陽離子等。
2.1.3目前的應用
目前,作為好氧顆粒污泥技術的典型代表,Nereda工藝在過去10年里得到快速的發展,截至2016年全球正在設計、建設及運行的Nereda污水處理廠有32座,這些污水處理廠分布于歐洲、美洲、澳洲、非洲等地。與相同負荷的活性污泥工藝相比,Nereda好氧顆粒污泥技術可減少占地面積25%~75%,能耗降低20%~50%。
從好氧顆粒污泥的技術發展進程來看,以Nereda為代表的好氧顆粒污泥技術實際上是一種利用內在基質選擇顆粒污泥的過程,內在基質選擇的一個關鍵因素是需要有足夠高的基質濃度來形成顆粒,并促使形成較高含量的胞外聚合物(EPS)及胞內儲存物,這種方式要求將沉淀較慢的絮體污泥排除系統,保留下沉淀較快的顆粒污泥,為了避免出水SS較高,可能需要有一個后置的過濾系統。Nereda這種SBR的技術形式在很大程度上限制了對現有污水處理廠的改造,因為絕大部分污水處理廠并不是SBR工藝。因此,在推流式工藝上采用外置選擇器的方式在近年來得到了快速的發展,外置選擇器可以是篩網或旋流器,篩網是利用顆粒的粒徑來截留較大的顆粒污泥,旋流器是利用顆粒污泥密度較大的特點而在底流中獲得較高比例的顆粒污泥,如圖3所示。
2.1.4未來的發展
好氧顆粒污泥技術在未來可能會有以下幾個發展趨勢。第一,提高工藝應用的穩定性,好氧顆粒污泥技術在長期運行過程中的穩定性在某種程度上是制約這一技術應用的一個瓶頸,穩定性涉及到兩個方面,一個是顆粒污泥的解體,一個是絲狀菌的過度增殖,前者會導致顆粒污泥破碎為細小顆粒,后者會導致顆粒污泥蓬松,容易流失。
第二,就如同活性污泥工藝從早期的SBR向連續流工藝發展一樣,當前及今后一段時間內好氧顆粒污泥的研發及應用趨勢正朝著連續流工藝的方向發展,因為現在的絕大部分污水處理廠是連續流工藝,將其轉為SBR的形式所需的投資費用很高,如何能夠在這些連續流的污水處理廠中應用好氧顆粒污泥技術成為這一領域的發展熱點。
第三,好氧顆粒污泥技術的進一步發展過程中,在機理與技術應用方面仍然有多個方面需要深入研究,這些方面主要包括理解促成顆粒污泥形成的內部基質特性、如何確保外置選擇器能夠實現良好的污泥沉降性能和生物除磷功能,以及如何將內在基質選擇和外部選擇的措施應用于工程化規模的污水處理廠。